MPI Lead: Toni

Transistors in Analog Design Bass Distortion

Audio Amplifier	A circuit that increases the amplitude of low-power audio signals to a level suitable for driving loudspeakers, usually including filters in their design for better sound reproduction	
Filter	A circuit that selectively allows signals of certain frequencies to pass while attenuating others. It's commonly used to remove unwanted noise or to separate different frequency components in a signal	
Amplification vs Switching	In BJT transistors, amplification occurs when the transistor operates in the active region , where it linearly increases the input signal's amplitude. In contrast, switching uses the transistor in either cutoff (off) or saturation (on) regions, acting like an electronic on/off switch rather than varying signal strength.	
AC vs DC	AC (Alternating Current) is a signal that constantly changes direction and varies in voltage over time, often forming a wave-like shape such as a sine wave. DC (Direct Current) is a flat, constant signal that stays at the same voltage level	
DC Offset	Refers to biasing of transistors → A constant DC voltage needs to be set and applied to the base to ensure the transistor operates within the correct region (active in our case)	
Clipping	Clipping , in relation to diodes, occurs when diodes are used in a circuit to limit the voltage of a signal by cutting off (or "clipping") parts of the waveform that exceed certain voltage levels. This creates a flattened top or bottom of the signal	
Feedback	Feedback in a BJT transistor circuit involves routing a portion of the output signal back to the input to influence the transistor's behavior. Can be negative or positive.	

Terminology & Concepts

NPN BJT Transistor

Potentiometer

Diodes

- ☐ The input is a small AC voltage signal with a frequency of 60Hz 250Hz
- ☐ High pass filter → why include it and how does this work?
- Test points → why are these important?

Part 1: Input

- R5 → Connects 9V to the R3, R1 junction, forming a voltage divider that sets the DC offset for the base of the transistor
- R3, R1 → Adjustable voltage divider
- □ C3 → Used for AC coupling (ensures DC bias is stable by shunting AC noise signals)

Part 2: DC Offset + Bias

- Left branch → Clips positive values of signal (AC) waveform
- ☐ Right branch → Clips negative values of signal (AC) waveform
 - \Box \uparrow diodes = \uparrow voltage threshold = \downarrow clipping
 - Adjustable resistor → sloped clipping
- C2 → AC coupling
 - Blocks DC signal from clipping branches
 - Passes AC signal to base of the transistor
 - Ensures DC signals from clipping branches don't affect bias voltage divider from previous stage

Part 3: Clipping

- □ Transistor → Biased in active region, it acts as an amplifier
 - Amplifies AC signal on **base**
- → Limits base current going into Q1
 (protection: think bass guitar) and, with C2, creates a low-pass filter
- Negative feedback loop:
 - □ C4 \rightarrow ↑ signal frequency = ↑ shunted to ground = \downarrow gets amplified
 - R4, R2 \rightarrow \downarrow voltage drop across transistor (V=IR) = \downarrow amplification of signal
 - \Box C5 \rightarrow in parallel with R4 + R2...

↑ signal frequency = capacitor → short = ↑ voltage drop across transistor = ↑ amplification

Part 4: Amplification

□ C6 → AC coupling capacitor that blocks any DC offset present at the collector of the transistor while only passing the amplified AC signal

Think practically: what would happen if it wasn't there?

Part 5: Output

- For resistors → find the indicated value (500 ohm, 68k, 7.5k) in the Hive benchtop drawers
- For diodes → this is part of the distortion you get to personalise! Pick and choose from the Hive benchtop drawers

Fabrication

Component List

Name	Quantity	Symbol(s)
2N3904 NPN Transistor	1	Q1
10K pot	2	R6, R7
100K pot	1	R4
500K pot	2	R1, R3
100 uF cap (polarized)	1	C5
2.2uF cap	2	C1, C2
10uF cap	2	C4, C6
0.1 uF capacitors	1	C3
Male/looped pin header	6	TP1 - 6
Female pin header	4	D3 (2), D4 (2)
Resistors	3	R2, R5, R8
Diodes	2	D1, D2

Simulation/Testing

- 1) Function generator:
 - a) Use 1 BNC → banana cable and 1
 BNC → BNC cable
 - b) Use a T-splitter on the input of the generator
 - c) Connect the BNC → BNC cable from the T-splitter to the o-scope input
 - d) Connect other cable from T-splitter to circuit
 - e) Hook up red to input TP
 - f) Hook up black to GND TP
 - g) Set generated function to:
 - i) High-z impedance
 - ii) 100 Hz frequency
 - iii) 1 Vpp amplitude (sine wave)

Simulation/Testing

- 1) Oscilloscope:
 - a) Use 1 BNC \rightarrow banana cable
 - b) One input should have the function generator signal
 - c) Connect the BNC → banana cable to the other input
 - d) Hook up red to output TP
 - e) Hook up black to GND TP
 - f) Turn on scope and hit Default

Simulation/Testing

1) **Power Supply**:

- a) 2 banana → banana cables
- b) Connect 1 cable from +20V to +9V TP
- c) Connect other cable from COM to GND TP
- d) Set power supply to 9V on the 20V output

What you should expect to see...

For questions/comments on this circuit and workshop, contact:

Antonia (Toni) Rabisheva

arabisheva3@gatech.edu

